Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(37): 13925-13936, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656597

RESUMO

Emissions of chloroform (CHCl3), a short-lived halogenated substance not currently controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer, are offsetting some of the achievements of the Montreal Protocol. In this study, emissions of CHCl3 from China were derived by atmospheric measurement-based "top-down" inverse modeling and a sector-based "bottom-up" inventory method. Top-down CHCl3 emissions grew from 78 (72-83) Gg yr-1 in 2011 to a maximum of 193 (178-204) Gg yr-1 in 2017, followed by a decrease to 147 (138-154) Gg yr-1 in 2018, after which emissions remained relatively constant through 2020. The changes in emissions from China could explain all of the global changes during the study period. The CHCl3 emissions in China were dominated by anthropogenic sources, such as byproduct emissions during disinfection and leakage from chloromethane industries. Had emissions continued to grow at the rate observed up to 2017, a delay of several years in Antarctic ozone layer recovery could have occurred. However, this delay will be largely avoided if global CHCl3 emissions remain relatively constant in the future, as they have between 2018 and 2020.


Assuntos
Clorofórmio , Ozônio Estratosférico , Regiões Antárticas , China , Desinfecção
2.
Nature ; 618(7967): 967-973, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37380694

RESUMO

Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1-3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4-6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite their widespread distribution in the atmosphere, the combined impact of these species on Earth's radiative balance remains unknown. Here we show that short-lived halogens exert a substantial indirect cooling effect at present (-0.13 ± 0.03 watts per square metre) that arises from halogen-mediated radiative perturbations of ozone (-0.24 ± 0.02 watts per square metre), compensated by those from methane (+0.09 ± 0.01 watts per square metre), aerosols (+0.03 ± 0.01 watts per square metre) and stratospheric water vapour (+0.011 ± 0.001 watts per square metre). Importantly, this substantial cooling effect has increased since 1750 by -0.05 ± 0.03 watts per square metre (61 per cent), driven by the anthropogenic amplification of natural halogen emissions, and is projected to change further (18-31 per cent by 2100) depending on climate warming projections and socioeconomic development. We conclude that the indirect radiative effect due to short-lived halogens should now be incorporated into climate models to provide a more realistic natural baseline of Earth's climate system.


Assuntos
Atmosfera , Mudança Climática , Modelos Climáticos , Clima , Temperatura Baixa , Halogênios , Atmosfera/análise , Atmosfera/química , Halogênios/análise , Hidrocarbonetos Halogenados , Oceanos e Mares , Água do Mar/análise , Água do Mar/química , Mudança Climática/estatística & dados numéricos , Atividades Humanas
3.
Nat Commun ; 13(1): 2768, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589794

RESUMO

CH4 is the most abundant reactive greenhouse gas and a complete understanding of its atmospheric fate is needed to formulate mitigation policies. Current chemistry-climate models tend to underestimate the lifetime of CH4, suggesting uncertainties in its sources and sinks. Reactive halogens substantially perturb the budget of tropospheric OH, the main CH4 loss. However, such an effect of atmospheric halogens is not considered in existing climate projections of CH4 burden and radiative forcing. Here, we demonstrate that reactive halogen chemistry increases the global CH4 lifetime by 6-9% during the 21st century. This effect arises from significant halogen-mediated decrease, mainly by iodine and bromine, in OH-driven CH4 loss that surpasses the direct Cl-induced CH4 sink. This increase in CH4 lifetime helps to reduce the gap between models and observations and results in a greater burden and radiative forcing during this century. The increase in CH4 burden due to halogens (up to 700 Tg or 8% by 2100) is equivalent to the observed atmospheric CH4 growth during the last three to four decades. Notably, the halogen-driven enhancement in CH4 radiative forcing is 0.05 W/m2 at present and is projected to increase in the future (0.06 W/m2 by 2100); such enhancement equals ~10% of present-day CH4 radiative forcing and one-third of N2O radiative forcing, the third-largest well-mixed greenhouse gas. Both direct (Cl-driven) and indirect (via OH) impacts of halogens should be included in future CH4 projections.

4.
Nat Commun ; 12(1): 7279, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907196

RESUMO

With the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CH2Cl2). The emissions grew from 231 (213-245) Gg yr-1 in 2011 to 628 (599-658) Gg yr-1 in 2019, with an average annual increase of 13 (12-15) %, primarily from eastern China. The overall increase in CH2Cl2 emissions from China has the same magnitude as the global emission rise of 354 (281-427) Gg yr-1 over the same period. If global CH2Cl2 emissions remain at 2019 levels, they could lead to a delay in Antarctic ozone recovery of around 5 years compared to a scenario with no CH2Cl2 emissions.

5.
J Geophys Res Atmos ; 124(4): 2318-2335, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30984484

RESUMO

Very short-lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2-dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high-altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid-2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long-lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year-to-year growth rates are variable and were small or negative in the period 2015-2017. Whether this is a transient effect, or longer-term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004-2017) is -5.2% per decade with VSLS included, in good agreement to ACE satellite data (-4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid-2000s.

6.
Nature ; 549(7671): 211-218, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28905899

RESUMO

As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.

7.
Nat Commun ; 8: 15962, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28654085

RESUMO

It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane-an ozone-depleting gas not controlled by the Montreal Protocol-is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer.

8.
J Phys Chem A ; 119(19): 4618-32, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25768043

RESUMO

Over the last two decades it has emerged that measured hydroxyl radical levels in the upper troposphere are often underestimated by models, leading to the assertion that there are missing sources. Here we report laboratory studies of the kinetics and products of the reaction between CH3O2 and BrO radicals that shows that this could be an important new source of hydroxyl radicals:BrO + CH3O2 → products (1). The temperature dependent value in Arrhenius form of k(T) is k1 = (2.42­0.72+1.02) × 10­14 exp[(1617 ± 94)/T] cm3 molecule­1 s­1. In addition, CH2OO and HOBr are believed to be the major products. Global model results suggest that the decomposition of H2COO to form OH could lead to an enhancement in OH of up to 20% in mid-latitudes in the upper troposphere and in the lower stratosphere enhancements in OH of 2­9% are inferred from model integrations. In addition, reaction 1 aids conversion of BrO to HOBr and slows polar ozone loss in the lower stratosphere.


Assuntos
Atmosfera/química , Compostos de Bromo/química , Radical Hidroxila/química , Metano/química , Peróxidos/química , Simulação por Computador , Cinética , Análise dos Mínimos Quadrados , Modelos Lineares , Metano/análogos & derivados , Modelos Químicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...